Sunday, March 12, 2017

ALIRAN ENERGI PADA PERAIRAN ESTUARI

ALIRAN ENERGI PADA PERAIRAN ESTUARI
Aliran energi?
So what dengan aliran energi. Nah, ternyata teman-teman aliran energi itu sama dengan perpindahan energi dari satu benda ke yang lain atau bisa, dimana akan terjadi perpindahan energi tentunya ada juga penghasil energi dan di mamfaatkan oleh pihak ke-2,3,4,5 dst. Lebih detailnya lagi teman-teman mari kita jelaskan di bawah ini.
1. Aliran Energi
Dalam ilmu ekologi aliran energi ini terdapat dua hal yang perlu dikaji yaitu: rantai makanan dan jaring-jaring makanan.
Rantai makanan adalah perpindahan energi makanan dari sumber daya tumbuhan melalui seri organisme atau melalui jenjang makan (tumbuhan-herbivora-carnivora). Pada setiap tahap pemindahan energi, 80%–90% energi potensial hilang sebagai panas, karena itu langkah-langkah dalam rantai makanan terbatas 4-5 langkah saja. Dengan perkataan lain, semakin pendek rantai makanan semakin besar energi yang diperlukan .
Pada ekosistem estuaria dikenal 3 (tiga ) tipe rantai makanan yang didefinisikan berdasarkan bentuk makanan atau bagaimana makanan tersebut dikonsumsi : grazing, detritus dan osmotik. Fauna diestuaria, seperti udang, kepiting, kerang, ikan, dan berbagai jenis cacing berproduksi dan saling terkait melalui suatu rantai dan jaring makanan yang kompleks (Komunitas tumbuhan yang hidup di estuari antara lain rumput rawa garam, ganggang, dan fitoplankton. Komunitas hewannya antara lain berbagai cacing, kerang, kepiting, dan ikan. Bahkan ada beberapa invertebrata laut dan ikan laut yang menjadikan estuari sebagai tempat kawin atau bermigrasi untuk menuju habitat air tawar. Estuari juga merupakan tempat mencari makan bagi vertebrata semi air, yaitu unggas air.
Ada dua tipe dasar rantai makanan:
1.      Rantai makanan rerumputan (grazing food chain). Misalnya: tumbuhan
2.      Rantai makanan sisa (detritus food chain). Bahan mati mikroorganisme (detrivora = organisme pemakan sisa) predator.
3. osmotik
Dari ketiga macam rantai makanan ini, akan mempengaruhi organisme satu dengan lainnya.
Suatu rantai adalah suatu pola yang kompleks saling terhubung, rantai makanan di dalam suatu komunitas yang kompleks antar komunitas. Selain itu, suatu rantai makanan adalah suatu kelompok organisme yang melibatkan perpindahan energi dari sumber utamanya (cahaya matahari, phytoplankton, zooplankton, larva ikan, ikan kecil, ikan besar, binatang menyusui). Jenis dan variasi rantai makanan adalah sama banyak seperti jenis/spesies di antara mereka dan tempat kediaman yang mendukung mereka. Selanjutnya, rantai makanan dianalisa didasarkan pada pemahaman bagaimana rantai makanan tersebut memperbaiki mekanisme pembentukannya. Ini dapat lebih lanjut dianalisa sebab bagaimanapun jenis tunggal boleh menduduki lebih dari satu tingkatan trophic di dalam suatu rantai makanan.
Dalam bagian ini, diuraikan tiga bagian terbesar dalam rantai makanan yaitu: phytoplankton, zooplankton, dan infauna benthic. Sebab phytoplankton dan zooplankton adalah komponen rantai makanan utama dan penting, dimana bagian ini berisi informasi yang mendukung keberadaan organisme tersebut. Sedangkan, infauna benthic adalah proses yang melengkapi pentingnya rantai makanan di dalam ekosistem pantai berlumpur. Selanjutnya, pembahasan ini penekananya pada bagaimana mata rantai antara rantai makanan dan tempat berlindungnya (tidal flat; pantai berlumpur).
Keruhnya perairan estuaria menyebabkan hanya tumbuhan mencuat yang dapat tumbuh mendominasi. Rendahnya produktivitas primer di kolom air, sedikitnya herbivora dan terdapatnya sejumlah besar detritus menunjukkan bahwa rantai makanan pada ekosistem estuaria merupakan rantai makanan detritus. Detritus membentuk substrat untuk pertumbuhan bakteri dan algae yang kemudian menjadi sumber makanan penting bagi organisme pemakan suspensi dan detritus. Suatu penumpukan bahan makanan yang dimanfaatkan oleh organisme estuaria merupakan produksi bersih dari detritus ini. Fauna di estuaria, seperti ikan, kepiting, kerang, dan berbagai jenis cacing berproduksi dan saling terkait melalui suatu rantai makanan yang kompleks (Bengen, 2001).
Pada kawasan-kawasan subtripic sampai daerah dingin, fungsi estuary bukan hanya sebagai daerah pembesaran bagi berjuta hewan penting, bahkan menjadi titik daerah ruaya bagi jutaan jenis burung pantai. Kawasan estuary di gunakan sebagai daerah istrahat bagi perjalanan panjang jutaan burung dalam ruayanya mencari daerah yang ideal untuk perkembanganya. Disamping itu juga di gunakan oleh sebagian besar mamalia dan hewan-hewan lainnya untuk mencari makan.
Jumlah spesies organisme yang mendiami estuaria jauh lebih sedikit jika dibandingkan dengan organisme yang hidup di perairan tawar dan laut. Sedikitnya jumlah spesies ini terutama disebabkan oleh fluktuasi kondisi lingkungan, sehingga hanya spesies yang memiliki kekhususan fisiologis yang mampu bertahan hidup di estuaria. Selain miskin dalam jumlah spesies fauna, estuaria juga miskin akan flora.
3.      Jaring-jaring makanan
Estuari merupakan tempat perawatan dan penyediaan makanan bagi ikan-ikan muda yang mempunyai arti ekonomi tinggi, antara lain ikan muda herrinh (Clupea harengus), ikan pipih (flat fish) mencakup Pleuronectes platessa, dan Platichthys flexus, Bothus lunatus, flounders, serta ikan halibut antara lain Hippoglossus hippoglossus dan Arnaglossus imperalis, dan ikan menhaden, Brevoortia tyranus. Ikan pipih, ikan halibut, dan ikan menhaden itu bertelur di estuary. Ikan-ikan dewasa ditemukan di dasar muara sungai yang tidak ada arus yang kuat. Pada saat air pasang ikan-ikan ikut naik ke atas dan masuk di estuari. Ikan-ikan muda mendapat perawatan dan makanan di estuari yang kaya makanan. Jaring-jaring makanan ikan dalam estuari dapat dilukiskan sebagai berikut.
Vegetasi (Spartina sp., Juncus sp., Destichlis sp., Puccinella sp., Enteromorpha sp., Zoostera sp., Salicarma sp., Armeria sp., Spergularia sp., Limonium sp.,) yang hidup di estuari itu jarang sekali dimakan herbivora. Juga bila ada pohon bakau, maka tumbuhan itu juga tidak dimakan hewan. Oleh sebab itu perairan estuari dan juga payau-payau itu sebenarnya merupakan daerah yang kaya makanan bagi plankton dan invertebrata yang merupakan makanan bagi ikan. Vegetasi di daerah estuari juga menyediakan makanan bagi belalang, dan gastropoda yang jumlahnya biasanya tinggi di musim panas justru di waktu ikan-ikan itu bertelur dan berbiak cepat dengan persediaan makanan yang berlimpah(Brotowidjojo, 1995).
4.      Aliran Materi
a.       Siklus Karbon
Di atmosfer terdapat kandungan CO2 sebanyak 0.03%. Sumber-sumber CO2 di udara berasal dari respirasi manusia dan hewan, erupsi vulkanik, pembakaran batubara, dan asap pabrik. Karbondioksida di udara dimanfaatkan oleh tumbuhan untuk berfotosintesis dan menghasilkan oksigen yang nantinya akan digunakan oleh manusia dan hewan untuk berespirasi.
Hewan dan tumbuhan yang mati, dalam waktu yang lama akan membentuk batubara di dalam tanah. Batubara akan dimanfaatkan lagi sebagai bahan bakar yang juga menambah kadar CO2 di udara. Di ekosistem air,pertukaran CO2 dengan atmosfer berjalan secara tidak langsung. Karbondioksida berikatan dengan air membentuk asam karbonat yang akan terurai menjadi ion bikarbonat. Bikarbonat adalah sumber karbon bagi alga yang memproduksi makanan untuk diri mereka sendiri dan organisme heterotrof lain.Sebaliknya, saat organisme air berespirasi, CO2 yang mereka keluarkan menjadi bikarbonat. Jumlah bikarbonat dalam air adalah seimbang dengan jumlah CO2 di air.
Angka dengan warna hitam menyatakan berapa banyak karbon tersimpan dalam berbagai reservoir, dalam milyar ton ("GtC" berarti Giga Ton Karbon). Angka dengan warna biru menyatakan berapa banyak karbon berpindah antar reservoir setiap tahun. Sedimen, sebagaimana yang diberikan dalam diagram, tidak termasuk ~70 juta GtC batuan karbonat dan kerogen. Keberadaan karbon di pantai sumbernya oleh (Dahuri et al, 2001) menggambarkan datang dari adanya diffusi (dissolved), organisme laut yang sudah mati (particulate), dan sampah-sampah di wilayah estuari serta berasal dari daratan.
Kontribusi aliran karbon dari daratan adalah C/N > 10, sedangkan dari perairan sendiri sebesar C/N < 6, penyebabnya tingginya variasi tersebut diakibatkan oleh tingginya pasokan air tawar dari sungai dan sumber karbon itu sendiri (Bengen, 2001). Selanjutnya, sumber di dalam (internal sources) akibat adanya proses dissolved dan particulate (gambar 6) dari karbon itu sendiri termasuk daur ulang partikel, exudation from producers, terlepas sel yang patah dan kotoran-kotoran konsumer (Dahuri et al, 2001).
b.      Siklus Nitrogen
Gas nitrogen banyak terdapat di atmosfer, yaitu 80% dari udara. Nitrogen bebas dapat ditambat/difiksasi terutama oleh tumbuhan yang berbintil akar (misalnya jenis polongan) dan beberapa jenis ganggang. Nitrogen bebas juga dapat bereaksi dengan hidrogen atau oksigen dengan bantuan kilat/ petir. Tumbuhan memperoleh nitrogen dari dalam tanah berupa amonia (NH3), ion nitrit (NO2- ), dan ion nitrat (NO3- ). Gas nitrogen tidak dapat digunakan secara langsung oleh sebagian besar organisme sebelum ditransformasi yang melibatkan menjadi senyawa NH3, NH4, dan NO3 sebelum digunakan dalam siklus.
Pada tumbuhan dan hewan, senyawa nitrogen ditemukan sebagai penyusun protein dan klorofil. Dalam ekosistem terdapat suatu daur antara organisme dan lingkungan fisiknya. Beberapa bakteri yang dapat menambat nitrogen terdapat pada akar Legum dan akar tumbuhan lain, misalnyaMarsiella crenata. Selain itu, terdapat bakteri dalam tanah yang dapat mengikat nitrogen secara langsung, yakni Azotobacter sp. yang bersifat aerob dan Clostridium sp. yang bersifat anaerob.Nostoc sp. dan Anabaena sp. (ganggang biru) juga mampu menambat nitrogen. Di dalam setiap daur, terdapat gudang cadangan utama unsur yang secara terus menerus bergerak masuk dan keluar melewati organisme. Selain itu, terdapat pula tempat pembuangan sejumlah unsur kimia tertentu yang tidak dapat didaur ulang melalui proses biasa. Dalam waktu yang lama, kehilangan bahan kimia tersebut menjadi faktor pembatas, kecuali apabila tempat pembuangan itu dimanfaatkan kembali. Pada akhirnya, daur bolak balik ini cenderung mempunyai mekanisme umpan balik yang dapat mengatur dirinya sendiri (self regulating) yang menjaga siklus tersebut agar tetap seimbang. Diantara beberapa siklus biogeokimia lainnya seperti siklus fosfor dan sulfur, siklus nitrogen adalah siklus biokimia yang sangat kompleks. Gambar berikut memperlihatkan tiga diagram siklus nitrogen yang sangat kompleks tersebut. Nitrogen di perairan sebagai molekul N2terlarut, amonium , Nitrit , Nitrat dan sebagai bentuk organik seperti urea, asam amino, serta range berbeda (Spencer, 1975).
c.       Siklus Fosfor
Di alam, fosfor terdapat dalam dua bentuk, yaitu senyawa fosfat organik (pada tumbuhan dan hewan) dan senyawa fosfat anorganik (pada air dan tanah). Fosfat organik dari hewan dan tumbuhan yang mati diuraikan oleh decomposer (pengurai) menjadi fosfat anorganik. Fosfat anorganik yang terlarut di air tanah atau air laut akan terkikis dan mengendap di sedimen laut. Oleh karena itu, fosfat banyak terdapat di batu karang dan fosil. Fosfat dari batu dan fosil terkikis dan membentuk fosfat anorganik terlarut di air tanah dan laut. Fosfat anorganik ini kemudian akan diserap oleh akar tumbuhan lagi. Siklus ini berulang terus menerus (Spencer, 1975).
Bagaiman teman-teman? Pasti sudah mengertikan. Nah, selanjutnya apabila ada penulisan yang salah, mohon di maklumi yah dan jangan lupa komentarnya J
SUMBER
Kramer, K.J.M.1994. Tidal Estuaries: Manual of Sampling and Analittycal Procedure. AA Balkema.
Nontji, A, 1993. Laut Nusantara. Jakarta: Penerbit Djambatan..
Odum, E.P.1998. Dasar-Dasar Ekologi edisi 4. Yogyakarta: Universitas Gadjah Mada Press.
Saptarini et al.1995. Pengelolaan Sumberdaya Kelautan dan Wilayah Pesisir. Jakarta: Dirjen Pendidikan dan Kebudayaan.
Spencer, C.P. 1975. The Micronutrient Ele-ment. In: Chemical Oceanography 2. J.P. Riley and G.Kinow (Eds). Academic Press London-New York.
Welch, P.1953. Limnology. New York: McGraw-Hill book,Co.Inc


No comments:

Post a Comment

Nama :
Alamat E-mail :
Pesan :